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Stereoselective total synthesis of (�)-decarestrictine D
from LL-malic acidI
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Abstract—A convergent stereoselective total synthesis of (�)-decarestrictine D from LL-malic acid is reported.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

(�)-Decarestrictine D (1) was independently isolated
from different strains of Penicillium (P. corylophilum,
P. simplicissimum)1 and Polyporous tuberaster along
with various other 10-membered lactones (decarestric-
tines A1/A2, B, C1/C2) of this family. Among this class
of compounds, (�)-decarestrictine D potentially inhibits
liver cell cholesterol biosynthesis (HEP cells, IC50 of
100 nm)1 and the structural difference between 1 and
other inhibitors such as mevinolin and compactin
suggests a different mode of action. Also, 1 is highly
bio-selective with no significant antibacterial, anti-
fungal, antiprotozoal or antiviral activity.1 Considering
its selective biological profile, compound 1 has been
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identified by many research groups worldwide as an
attractive synthetic target towards developing new cho-
lesterol-lowering drugs. Consequently, the synthesis of 1
and its seco acid have been reported by various research
groups.2–5

As part of our interest in the synthesis of bioactive nat-
ural products,6 herein, we report a stereoselective total
synthesis of (�)-decarestrictine D by a convergent strat-
egy wherein both the intermediates are derived from the
common, inexpensive starting material, LL-malic acid.
Our strategy relies on Sharpless asymmetric epoxida-
tion, acetylenic addition onto a chiral aldehyde, 1,
2-syn selective reduction and Yamaguchi macrolacton-
ization as the key steps. Retrosynthetic analysis reveals
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Scheme 1. Reagents and conditions: (a) (i) TBDPSCl, imidazole, CH2Cl2, 0 �C–rt, 4 h (90%); (ii) CSA, MeOH, rt, 0.5 h (85%); (b) (i) a,a-
Dimethoxytoluene, PPTS, CH2Cl2, 0 �C–rt, 3 h (78%); (ii) DIBAL–H, CH2Cl2, 0 �C–rt, 3 h (75%); (c) (COCl)2, DMSO, Et3N, CH2Cl2, �78 �C
(95%); (d) Ph3PCHCOOEt, benzene, reflux, 2 h (70%); (e) LiAlH4/AlCl3, ether, 0 �C, 6 h (65%); (ii) (+)-DIPT, Ti(OiPr)4, cumene hydroperoxide,
CH2Cl2, �20 �C, 12 h (85%); (f) CCl4, Ph3P, NaHCO3, reflux, 1 h (90%); (ii) LDA, THF, �78 �C to �40 �C, 3 h (65%); (g) (i) BnBr, NaH, THF,
0 �C–rt, 6 h (80%); (ii) CSA, MeOH, rt, 0.5 h (85%); (h) (i) TsCl, Et3N, CH2Cl2, 0 �C–rt, 12 h (75%); (ii) LiAlH4, THF, 0 �C–rt, 2 h (90%); (i) PMBBr,
NaH, THF, 0 �C–rt, 12 h (75%).
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that target compound 1 can be obtained from seco acid
2 by Yamaguchi macrolactonization and subsequent
deprotection of the benzyl groups. Seco acid 2, in turn,
could be obtained from chiral propargylic alcohol 3 and
compound 3 itself by coupling fragments 4 and 5 fol-
lowed by an oxidation–reduction protocol to generate
the 1,2-syn diol system. Both fragments 4 and 5 can be
realized independently from LL-malic acid by simple
chemical transformations.
2. Results and discussion

Accordingly, the synthesis of 1 starts with compound 6
(Scheme 1), which is readily obtained from LL-malic
acid.7 Thus, 6 was silylated (TBDPSCl/imidazole/
CH2Cl2/rt) and then on exposure to CSA in MeOH gave
diol 7 (85%). Diol 7 was converted into a benzylidene
derivative (a,a-dimethoxytoluene/PPTS/CH2Cl2), which
on subsequent regioselective reductive ring-opening
reaction with DIBAL–H in CH2Cl2 afforded the free
primary alcohol 8 (75%), which was oxidized under
Swern conditions to afford aldehyde 4 (95%).

To prepare alkyne 5, alcohol 6 was subjected to Swern
oxidation followed by a Wittig olefination reaction
(Ph3PCHCOOEt/benzene/reflux) to afford trans a,b-
unsaturated ester 9 (70%). The reduction with LiAlH4–
AlCl3 in diethyl ether and then exposure of the ensuing
allylic alcohol to Sharpless epoxidation [(+)-DIPT/
Ti(OiPr)4/cumene hydroperoxide/CH2Cl2/�20 �C]
afforded epoxy alcohol 10 (85%). Epoxide 10 was chlo-
rinated (CCl4/Ph3P/reflux) followed by a base induced
double elimination (LDA/THF) to afford propargylic
alcohol 11. The hydroxyl group in 11 was protected as
its benzyl ether (BnBr/NaH//THF/rt) and the cyclo-
hexylidene group was cleaved (CSA/MeOH/rt) to afford
the corresponding diol 12 (85%). The primary hydroxyl
group in diol 12 was selectively monotosylated (TsCl/
Et3N/CH2Cl2/rt), which upon exhaustive reduction
(excess LiAlH4/THF) generated alkyne 13 with the
terminal methyl group being installed. Finally, the sec-
ondary hydroxyl group was protected as its PMB ether
(PMBBr/NaH/THF/rt) to furnish fragment 5.

In order to prepare 3, alkyne 5 (Scheme 2) was treated
with n-BuLi in THF at �78 �C and the resulting acetyl-
enic anion was quenched with 4 to yield 14 (70%) as a
diastereomeric mixture (de 20%). In order to increase
the diastereoslectivity, and to obtain the requisite stereo-
centre at the newly created site, hydroxy alkyne 14 was
oxidized to its corresponding keto compound (Dess–
Martin periodinane/CH2Cl2) and selectively reduced
with K-Selectride8 in THF at �78 �C to give 3 (80%)
and its diastereomer (15%) (de 70%) as a separable mix-
ture. The reaction of 3 with Red-Al, in diethyl ether gave
the corresponding olefin, and the resulting allylic hydr-
oxyl group was protected as its benzyl ether (BnBr/
NaH/THF–DMF/rt) to afford 15 (75%). TBDPS depro-
tection (TBAF/THF/rt) afforded primary alcohol 16
(95%), which was oxidized to the corresponding acid
by a two-step process; firstly to an aldehyde by Swern
oxidation and then on perchlorite oxidation (NaClO2/
NaH2PO4.2H2O/t-BuOH/2-methyl-2-butene) to the acid
17 (80% over two steps). Treatment with DDQ in
CH2Cl2–H2O afforded seco acid 2 as its tri benzyl ether
derivative. Yamaguchi macrolactonization9 yielded 18
(45%) and finally global debenzylation (TiCl4/CH2Cl2/
0 �C–rt) gave the target compound 1 (65%), ½a�25

D �60:3
(c 0.4, CHCl3) {natural 1; ½a�25

D �62:0 (c 1.0, CHCl3)1a

and synthetic 1, [a�25
D �67:0 (c 0.26, CHCl3),2 ½a�25

D �68
(c 0.066, CHCl3)5}. The physical and spectroscopic data
of our synthetic sample 110 were identical to those of the
reported natural and synthetic products.
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Scheme 2. Reagents and conditions: (a) n-BuLi, 4, THF, �78 �C, 3 h (70%); (b) (i) Dess–Martin periodinane, CH2Cl2, 0 �C–rt, 2 h (90%); (ii) K-
Selectride, THF, �78 �C, 3 h (80%); (c) (i) Red-Al, ether, 0 �C–rt, 2 h (95%); (ii) BnBr, NaH, THF–DMF (9:1), 0 �C–rt, 4 h (75%); (d) TBAF, THF,
0 �C–rt, 12 h (95%); (e) (i) (COCl)2, DMSO, Et3N, CH2Cl2, �78 �C 1 h; (ii) NaClO2, NaH2PO4 Æ2H2O, t-BuOH–2-methyl-2-butene (3:1), 0�C–rt, 12 h
(80% for two steps); (f) DDQ, CH2Cl2–H2O (19:1), rt, 1 h, (80%); (g) 2,4,6-trichlorobenzoyl chloride, Et3N, THF, 0 �C–rt, 4 h, then DMAP, toluene,
reflux, 12 h (45%); (h) TiCl4, CH2Cl2, 0 �C–rt, 1 h (65%).
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The present synthesis of 1 differs from that published by
Andrus et al.2 in the sense that 1,2-syn selective reduction
of the ketone of 14 derived from LL-malic acid was in-
voked for accessing the vicinal syn diol system (15) in a
more defined manner. This overcomes the ambiguity
arising from isomeric products obtained during Sharp-
less dihydroxylation of a diene as in the earlier strategy.
Likewise, one of the hydroxyl groups (C9–OH) of the
1,3-anti diol system was realized from the pre-existing
chirality in LL-malic acid and the other (C7–OH) through
the Sharpless asymmetric epoxidation protocol.
3. Conclusion

In conclusion, a stereoselective synthesis of (�)-decare-
strictine D 1 was accomplished by means of a versatile
strategy, wherein LL-malic acid was used as the common
starting material for accessing both the advanced inter-
mediates for use in a convergent total synthesis.
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1H, J = 5.0 Hz), 4.50 (d, 1H, J = 5.4 Hz), 4.41 (d, 1H,
J = 12.0 Hz), 4.30 (d, 1H, J = 12.0 Hz), 4.06 (t, 1H,
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14.3 Hz), 2.39 (dd, 1H, J = 6.4, 14.3 Hz), 1.90–1.76 (m,
2H), 1.25 (d, 3H, J = 6.2 Hz); 13C NMR (75 MHz,
CDCl3): 174.81, 133.86, 129.69, 73.98, 72.49, 72.11,
68.28, 43.04, 33.33, 21.23; IR (KBr) 3414, 2925, 2855,
1708, 1042 cm�1; HRMS: Calcd m/z 239.0895 (C10H16-
O5Na). Found m/z 239.0906, ppm error 4.4186. Literature
data2 of compound 1: [a]D �67.0 (c 0.26, CHCl3) [lit.1b

[a]D �62.0 (c 0.4, CHCl3)]; mp = 118–120 �C (lit.1b mp)
114–115 �C; 1H NMR: d 5.91 (dd, 1H, J = 15.8, 8.3 Hz),
5.85 (dd, 1H, J = 15.8, 2.4 Hz), 5.25 (ddq, 1H, J = 14.0,
6.4, 1.9 Hz), 4.54–4.78 (br s, 1H), 4.43 (dd, 1H, J= 3.7,
1.6 Hz), 4.20 (ddd, 1H, J = 11.0, 8.3, 4.0 Hz), 3.94–4.13
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73.9, 72.5, 72.2, 68.2, 43.0, 33.2, 21.3 (lit.1b (CD3OD)
174.7, 135.9, 129.4, 75.4, 73.6, 73.1, 69.4, 44.2, 35.6,
21.6).
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